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Navier-Stokes equations for one-dimensional motion of gas are reduced to a spe- 
cial dimensionless form convenient for investigations involving a pe.rturbation 
front. In new variables the transition from limit conditions of motion of an invis- 
cid non-heat-conducting gas to the case of small but finite coefficients of visco- 
sity and thermal conductivity, which is simulated by a perfect gas with singular 
perturbations induced by the indicated dissipative factors. We establish the ine- 
vitability of existence of two regions of singular perturbations, the neighborhood 
of the perturbation front and that of the point (line, surface) where the investigated 
motion is generated. The derivation of equations for both boundary layers, which 
is valid for a fairly general statement of problems of this kind, is presented and 
conditions of merging with the external (adiabatic) flow are formulated. Examples 
of computation of motion in boundary layers in problems of piston and point ex- 
plosion are presented. 

1. Trrnrformrtion of N&viar-Stoke8 equrtionr. Let us consider the 
one-dimensional unstable motion of a real perfect gas with constant specific heats cp 
and C, and,also, the Prandtl number (r = ps, / 1, where p and 5 are the coeffici- 
ents of viscosity and thermal conductivity, respectively. 

Using the dimensionless parameter v which defines the kind of motion symmetry 
(v = 1, 2, a), we write the Navier-Stokes equations in the form 

p=(x-l)pe, p=Ac"'(A, n=const) 

We assume that the density distribution of the gas in space conforms to the law 

Pl = Br" (B, 0 = const) (1.2) 

We furthermore assume that the unperturbed gas is at rest at zero values of tempera- 
ture and pressure. This makes it possible to consider the region of perturbed motion to 
be of finite dimensions and bounded by surface r = rf (t) which is called the pertur- 
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bation front. Function rf (1) is determined in the course of solution, which does not 
prevent us from using it for transforming Eqs. (1.1) to a new form that is more conveni- 
ent for solving boundary value problems and for investigating the extreme modes of mo- 
tion. 

We introduce the notation dr, I dt = U and substitute the new independent dimen- 
sionless variables us+1 

tl-$7 X= (&“-- BF@ (1.3) 
f 

for r and t . 

The choice of the second argument (1.3) is based on two considerations, First, it must 
depend only on time and be a continuous monotonic differentiable function of t (fulfil- 
ment of these conditions is proved later). Second, in specifying aII physical parameters 
of gas, except p and h, we stipulate that argument Ir. must vanish simultaneously with 
these coefficients. These considerations and the condition for it to be dimensionless 
yield for X the definition (1.3). 

For the unknown functions in Eqs. (1.1) we also substitute new dimensionless functions 
defined by formulas 

v = uv(q, x), p = Bq-@R (q, x), p = BvUaJ' 01, xh (1.4) 
e =(x - l)-W* N (q, x), P = @rf-@UN” (7, X) 

To transform Eqs. (1.1) we need the quantity (subscript t denotes differentiation with 
respect to time) 

Z = U,U-2rf (1.5) 

which is generally not known a p r i o r i , depends on X and is constant for any x. 
It is important to take Into account that for X = 0, i.e. in the absence of viscosity, 
Z (0) = Zo is known and conforms to the law of motion of the front in the extreme 
mode, when the latter is transformed into a shock wave. 

Reverting to formulas (1.3), we note that in conformity with the definition of the new 
argument x we have 

d In x / dt = Ur,-‘K (x), K (x) = 0 - 1 + (2n - 1) Z (l* 6, 
Using the notation of (1.5) and ( 1.6) and introducing new variables defined in (1.3) 

and (1.4) into Eqs. (1. l), we reduce the latter to the form 

(V-q)$+R+K++R$++RV=O (1.7) 

R ZV+(V-q)++K$]++ 
II 

-& +-[Nn(g-+;)] +2@-qx+(+-%, 

R 2ZN+ (V-~)~+KX~+(~--~)~(~+~ )] [ 
v =. 

$ X1ll-v+(q'-l~nAT) 
+2(Mx~"{($)"+ 

(~--1)++[$&+@-1)+~}, P=RN 

Equations (1.7) represent the dimensionless equivalent of the Navier-Stokes equations, 
and can be used for investigating and deriving the solution of a fairly wide class of 



Singular perturbations in unsteady motion of a real gas 1011 

problems of one-dimensional unstable motion of real gas in the presence of a perturba- 
tion front, At the limit x = 0 Eqs. (1.7) are transformed into a system that defines the 
self-similar adiabatic motion of perfect gas in the presence of shock waves (see [l]) . 
However the transition from x = 0 to small but finite X; is associated with the appear- 
ance of regions of singular perturbation that are similar to the boundary layer on bodies 
in an external stream. Besides the purely formal indication (small coefficient at the 
leading derivative) the singular character of behavior of soiutions of Eqs. (1.7) in the 
neighborh~ of certain surfaces 11 = con& and small x is explained by that all solu- 
tions of the limit self-similar problem cannot simultaneously satisfy all boundary con- 
ditions of the complete problem. 

It can be readily shown that in the case of the considered class of one-dimensional 
motions at least two regions of singular perturbation of the boundary layer kind must 
develop, One of these lies in the neig~o~~ of the perturbation front, where the tran- 
sition from hydrodynamic parameters related to a strong shock wave to parameters of 
the unperturbed gas must occur for small x . The second boundary kyer lies at the 
point (line, surface) where the investigated motion itself is generated. Solutions of the 
dimensionless variant of Euler’s equations satisfy at that point only the condition for 
velocity, while the specification of temperature or of the heat flux results in the appea- 
rance of related transition region. 

A qualitative and quantitative analysis of the two indicated boundary layers is presen- 
ted below, 

2, The boundary layer of the perturbation front, Letusrefine the 
boundary conditions that must be satisfied at the perturbation front. That front is a sur- 
face of weak ~swn~ui~ which dces not contain sources of mass, momen~m, or energy 
and in which basic variables are the same as in an unperturbed region. With the use of 
notation of Eqs. (1.7) we obtain boundary conditions of the form 

R (1, x) = 1, P (1, x) = Iv (1, XI = v (1, II) = 0 (2.1) 

x (NYNV I a@ *r = x (NVV I a?&,, = 0 

Conditions (2.1) must be supplemented by the conditions of boundary layer merging 
with the external (inviscid) stream. This will be done later, after the introduction of 
deformed variables of the boundary layer, 

Assuming that surface q = 1 is the inner boundary of the front boundary layer, we 
change argument q so that the viscous and basic convection terms of Eqs. (1.7) become 
of the same order wrth respect to x. This is feasible, if we assume 

‘1 l-PI* ZZ (2.2) 

The scale of unknown variables remains unchanged, but we add to the notation sub- 
script * . After this, with the use of substitution (2.2) followed by passing to limit 
x + 0 , from Eqs. (1.7) we obtain 

(R*V,)’ - R,’ = 0, R, (V,’ - V,V*‘) - P,' = Y, (N*v*'y (2.3) 

R, (N,’ - VJV,‘) - (Se - 1) P*V*' = (x / a) (N*"N*')' + 
d/s (x - i)N*n (V*')8, P, = R*N* 

where the prime denotes a derivative with respect to r)*. The group of “inner” boundary 
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conditions is readily derived i&m (2. l), and with their use the order of system (2.3) can 
be easily reduced, yielding 

R, = 1 / (1 - V,), 41SN*nV/ = V, - R*N, (2.4) 
(x / a)N,“N,’ = N, - 1/8 (x - 1)Ve2 

System (2.4) corresponds to the system of the first approximation equations that define 
the shock wave stmcture in a hypersonic flow obtained in [2]. The properties of solu- 
tions of this system are analogous to those for the structure of a stationary shock wave of 
arbitrary intensity which was thoroughly investigated by many authors [S-S]. Note that 

v., 54. %Rc 
for u = 3/d system (2.4) admits (for cer- 
tain n) an analytic solution or can be redu- 
ced to a numerical quadrature, 

The conditions of merging with the exter- 
nal adiabatic stream are the “external” boun- 
dary conditions for Eqs. (2.4). In the consi- 
dered case values of all hydrodynamic para- 
meters of the boundary layer must for q* -+ 
oo be equal to those of the adiabatic stream 
at the shock wave,i.e. for q* + oo we 
have 

R x+i *--+-’ x-l 
(2.5) 

0 

terms. 
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Fig. 1 

2 2(x--i) 
7. ZY v*-+----9 

x+1 jv* - (x+1)' 

accurate to within exponentially attenuating 

Certain peculiarities of Eqs. (2.4) and their boundary conditions should be noted. 
First, it will be seen that the motion of gas in the front boundary layer is independent 
of both the problem dimensionality and of parameter density variation o. Second, for 
q+ = 0 the solutions of system (2.4) have a singularity,and the numerical solution of 
that system necessitates the use of asymptotic expansions (see [Z]) . For n = l/t and 
x = 2.U the first terms of these expansions are of the form 

N, = ‘/1sr1+2 + 0 (I),‘), v, = ‘/16qr2 + c%zs + o (%“I (2.6) 

f?, = i + 6/167j,” + cq~’ + 0 (t1+*) 

Formulas (2.6) ensure the fulfilment of all boundary conditions for rl+ - 0 and an 
approximate fulf’ilment of Eqs. (2.4) for small tl +, while by a suitable selection of the 
constant C we can satisfy the asymptotic conditions (2.5). profiles of velocity. tem- 
perature and density variation in the front boundary layer, obtained by numerical me- 
thods for n =V4, x = 1.4 and (J = 0.7 are shown in Fig. 1. 

8. Asymptotic formula, for the axxternrl rtrerm valid in the 
perturbation 8ourca neighborhood. To determine the pattern of motion in 
the boundary layer in the neighborhood of the perturbation source, we need asymptotic 
formulas for the parameters of the external adiabatic stream in that region. Many for- 
mulas of this kind have been published (see [l, 9. lo], however, owing to the absence of 
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a complete set of these for various perturbation sources and various values of v and o , 
we shall present the derivation of such formulas in a most general form. 

We assume that the adiabatic self-similar motion is generated at point ?j = b (b=O 
corresponds to the particular case of point explosion). The input equations are derived 
from (1.7) by setting in these x z 0 ; they are of the form 

V’ _ zotl bl -V)v+(2Zo--o)rlN+x(v--1)NV - 
tl I(‘1 - VI’ - fll 

(3. I) 

R’ -=- v’+(v- l)V/q--w N 2Zo+(x--)[V’+(y--)V/?l 
R q-V 1 r= tl-V 

where the prime denotes differentiation with respect to q . 
We introduce the notation h = q - b and assume that for small h we have inall 

cases 
V = b + cvl. (3.2) 

where constant b is specified, and for the determination of coefficients cv from (3.1) 
we have the formula 

Cy = (22, - 0) lx - (v - 1)l-I (3.3) 

II = Iim JL = iim b+cyk 

1 

i, b#O 
?.4 ‘1 ),_r,, b+?u = cv, b=O 

Having determined cv we can substitute V’ = cv into the second and third equations 
of system (3.1) ; using (3.3) we obtain 

R = cR (q - b)“, N = CN (q - b)-“’ (3.4) 

m=:- 220+0(x-i) 
x(1---cy) 

It is usually not possible to determine coefficients cR and CN by analyzing only the 
limit form of Eqs. (3. l), however their explicit expressions are not essential for further 
investigations. 

4. Boundary lryrr In tha perturbation aourca nrighborhood. 
We assume that at the point which represents the source of perturbations the analog of 
velocity is V = V, (x) with V, (0) = b (see Sect. 3). As the “thermal” boundary 
condition at that point we take the condition for zero heat flux there, i. e. 

x (NVN / *),,,1 = 0 

We pass in Eqs. (1.7) to variables 

(4.1) 

V = V, + V”$, q = b + $‘$, iV = iv“%-=, R = R”f’ (4.2) 

and then, as in Sect. 2, pass to the limit x + 0. One of the conditions for the deter- 
mination of constants a and b reduces to the requirement that after transformation 
(4.2) of the equation of energy its terms which correspond to convective heat transfer 
and thermal conductivity be of the same order with respect to x. This reduces to 

1 - (n + 1) a = 28 (4.3) 

The second condition consists in that for 11” * co solutions of transformed equations 
must convert into the asymptotic formulas (3.4) independently of the fixed value of X, 
in other words, the merging of solution for the boundary layer with the external stream 
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must beensured (see[ll]), Using (3.4) and (4,2) we can write 

N;__ = )$,,p$ = CN (r( - b)-*f = CN$-f-mp 

and evidently assume 
u = mp 

(4.4) 

(4.5) 

From (4.3) and (4.5) we obtain 

where m is determined by formula (3.4). 
To pass to limit after the substitution of (4.2) into (1.7) it is necessary to know the 

behavior of the relationship 
v--rl 

lim - x-c3 q-b =$z 
v, - b + (VO - 11”) xs V” - n” 

rlOXP 
=r 

9” (4.7) 

In the computation of the limit it is assumed here that VS - b decreases with de- 
creasing x more rapidly than x@, The validity of this assumption must be tested after 
refinement of the form of function Y, (x). 

It should be noted that at the limit x + 0 the behavior of some of the functions 
differs for b = 0 and b # 0. To maintain the unity of notation it is expedient to 
introduce symbols of step functions as defined in 

(4.3) 

Taking into account (4.7) and notation (4.8),after the substitution of variables in Eqs. 
(1.7) and passing to limit x -+ 0 we obtain 

(P - $) R”’ + [cc (o.- 1) + a (2n - 1) 2, - 0 + (Y - 1) 

Q, (b)l R” + (v - 1) \I (b) R”V” I q” + RT” = 0 

[22& - a (o - 1) - a (2~2 - 1) Z,, + (x - 1) (v - 1) cp (b)1 RON” 

(VO - f) RON” + (x - 1’) [$ (b) (‘v - 1) V” I q” + PI RON” 

x (4.9) 

+ 

= 

(x / a) [(N4”N”‘)’ + (v - i)lp (b) N”“N”’ I q”1, (RON“)’ = 0 

where the prime denotes differentiation with respect to q”. 
Equations (4.9) were derived on the important assumption that a + 28 > 0, which 

is justified in all practically interesting cases. 
System (4.9) admits the energy integral for both b # 0 and b == 0 s For b + 0 

that integral is obtained directly by replacing the derivative No’ in the left-hand part 
of the system’s second equation with the use of third and first equations. For b = 0 
(point explosion) Z. = -_y / 2 , which corresponds to this case, is to be used, Recal- 
ling formula (3.3) and using boundary conditions (4.1) together with condition Ir”(O)- 
0, we can represent the energy integral in the general-purpose form 

N”nN”’ = oRoN” (v* - C+f) (4.10) 

Taking into account that by virtue of the last of Eqs. (4.9) R”N” = cp (the con- 
stant known from self-similar solution) and introducing the new unknown function 

@ = pv+l 
(4.11) 
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it is possible to transform Eqs. (4.9) to a system of two first order equations 

W = (n + 1) cpu (V - c&) (4.12) 

v”‘=-(Y-l)Ip(~)V~/~O+aC~(~-~o)(VO-c~o)/Q)- 

a [cl - 1 + (212 - 1) Z,l + 0 - (Y - 1) cp (b) 

System (4.12) is to be integrated with conditions 

V” (0) = 0, V” (oo) = cJ@, @ (oc) = C+@+@+l) (4.13) 

which does not present any fundamental difficulties. Having obtained a numerical solu- 

tion for functions V” (q”) and @ (q“) we can obtain 

N” (q0) = Q ($ll(n+l), R" (q") = cp / N" (q“) (4.14) 

The last two conditions in (4.13) are basically the asymptotic equations for merging 

with the solution for the external stream, since it is these conditions that were used in 

determining formula (4.5). 

Let us indicate some qualitative singularities of the boundary layer at the perturbation 

source. First, we note that similarly to the aerodynamic boundary layer the pressure 
across it is constant (the front boundary layer does not have this property). Second, the 
thickness of the considered boundary Layer for fixed x is of different order than the 

boundary layer at the front. To determine the order of thickness of each layer it is suf- 
ficient to compare formulas (2.2) and (4.2) for the transformation of the independent 
variable. These formulas show that the front layer thickness is of order 6” = 0 (x), 

‘I’ Li? 

while at the perturbation source it is 
1’. = 0 (x ) a. . . in the maJorrty of cases 

1s smaller than umty, and can be some- 
times of order 0.01, which means that the 

boundary layer at the perturbation source 

Fig. 2 
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is considerably thicker than the similar layer at the front. The former is of noticeable 

thickness even for very small 2, while the thickness of the front layer can be considered 

to be negligibly small. 

Note that in the particular case of the problem of point explosion Sychev [12] had in- 
vestigated the boundary layer at the perturbation source for n = 1, v = 3, o = 0 
and x = T/s . 

Results of numerical calculations with the use of Eqs. (4.12)-(4.14) are shown in 
Fig. 2, where the variable q” appears on the axis of abscissas and V”, N” and R” are 
plotted along the axis of ordinates with the curves of these denoted by numerals I, 2 

and 3 , respectively. The dash lines represent asymptotic curves of the external stream. 

Curves for the case of point explosion are shown in Fig. 2, a for n = l/s, v = 3, o = 0, 
x =‘lb, 2, = - s/s and (3 = 0.7 , with m = 7.5, cN = 0.1634, cv = Q, cp = 0.3046, 

a = 0.5660 and p = 0.0755. Figure 2. b relates to the prohlem of a piston moving 
in accordance with the law rp = Ct”Ill, for n = l/s, v = 3, o = 2, x = ‘lb, z,, = 
- 0.1 and 0 = 0.7 3 with m = - 0.3, cN = 0.3513, cv = - 3/7, cp = 0.8495, a = 

- 0.1935 and fi = 0.6452. Figure 2, c relates to the case of a piston moving according 
to the law rp = ct’ld, n = 1, v = 1, o = 0, x = 11/8, 20 = - IIt and 0 = ‘1s , with 
m= ‘18, CN = 0.0988, cv= 0.4, cp = 0.4227, a = 0.2 and $ = 0.3. 

These examples were chosen so as to show the possible variety of conditions in the 

external stream and the related versions of boundary layers. These calculations and nu- 

merical data confirm the above qualitative conclusions. 
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One-dimensional or nearly one-dimensional unstable motions of perfect gas 

are considered. Integrals admitted by the system of equations defining such 

motions are examined. Since the existence of integrals is associated withsome 

law of conservation, i. e. with some divergent form of presentation of equations 

of the input system, it is possible by examining alJ divergent equations of gas- 
dynamics to derive certain new integrals not previously considered. 

1. As the basic system we select the continuity equation, the Euler equation, and the 
equation of energy conservation 

(1.1) 

(1.2) 

where subscripts i and k assume the values 1, 2, 3, and recurrent subscripts indicate 

summation. 

Below we refer to certain equations as being of divergent form, if their variables ap 

pear as derivatives, e. g. Eqs. (1.1) -( 1.3). Equations of divergent form are also called 
laws of conservation. 

Instead of Eq. (1.3) it is possible to use the equation of conservation of entropy of a 
particle ~+u&= 

k 
0, s=$ (1.4) 

We denote by A (S) an arbitrary function of S and by A’ (8) its derivative with 
respect to 5’. We multiply Eqs. (1.1) and (1.4) by A (8) and pA (8) , respectively, 
and add the results. We obtain 

6PA(S) + 
at & @kA (s)) = o (1.5) 

Equation (1.5) is of divergent form and contains an arbitrary function of entropy, 
Let us transform Eqs. (1.1) and (1.2). For convenience we introduce the following 

notation : 


